Abstract
In image-guided neurosurgery, patient registration is typically performed in the operating room (OR) at the beginning of the procedure to establish the patient-to-image transformation. The accuracy and efficiency of patient registration are crucial as they are associated with surgical outcome, workflow, and healthcare costs. In this paper, we present an automatic fiducial-less patient registration (FLR) by directly registering cortical surface acquired from intraoperative stereovision (iSV) with preoperative MR (pMR) images without incorporating any prior information, and illustrate the method using one patient example. T1-weighted MR images were acquired prior to surgery and the brain was segmented. After dural opening, an image pair of the exposed cortical surface was acquired using an intraoperative stereovision (iSV) system, and a three-dimensional (3D) texture-encoded profile of the cortical surface was reconstructed. The 3D surface was registered with pMR using a multi-start binary registration method to determine the location and orientation of the iSV patch with respect to the segmented brain. A final transformation was calculated to establish the patient-to-MR relationship. The total computational time was ~30 min, and can be significantly improved through code optimization, parallel computing, and/or graphical processing unit (GPU) acceleration. The results show that the iSV texture map aligned well with pMR using the FLR transformation, while misalignment was evident with fiducial-based registration (FBR). The difference between FLR and FBR was calculated at the center of craniotomy and the resulting distance was 4.34 mm. The results presented in this paper suggest potential for clinical application in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.