Abstract
Deep learning has yielded promising results for medical image diagnosis but relies heavily on manual image annotations, which are expensive to acquire. We present Cross-DL, a cross-modality learning framework for intracranial abnormality detection and localization in head computed tomography (CT) scans by learning from free-text imaging reports. Cross-DL has a discretizer that automatically extracts discrete labels of abnormality types and locations from reports, which are utilized to train an image analyzer by a dynamic multi-instance learning approach. Benefiting from the low annotation cost and a consequent large-scale training set of 28,472 CT scans, Cross-DL achieves accurate performance, with an average area under the receiver operating characteristic curve (AUROC) of 0.956 (95% confidence interval: 0.952-0.959) in detecting 4 abnormality types in 17 regions while accurately localizing abnormalities at the voxel level. An intracranial hemorrhage classification experiment on the external dataset CQ500 achieves an AUROC of 0.928 (0.905-0.951). The model can also help review prioritization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.