Abstract

In the manufacture of flat display panels, salt-and-pepper defects are caused by a malfunction in the chemical process. The defects are characterized by the dispersion of many black and white pixels in the display panels; these pixels are difficult to detect with conventional automatic fault detection methods that specialize in recognizing certain shapes, such as line or mura defects (stains). This study proposes a simple but high-performance salt-and-pepper defect detection method. First, the background image of the original image is generated using the mean filter in the spatial domain to create a noise image, which is the subtraction of the two images. A binary image is then obtained from the noise image to count the defective pixels, and a statistical control chart that monitors the number of defective pixels identifies the panel defects. Two experiments were conducted with images collected from an organic light-emitting diode inspection process, and the proposed method showed excellent performance with respect to classification accuracy and processing time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.