Abstract
To develop a dynamic nomogram containing radiomics signature and clinical features for estimating the overall survival (OS) of patients with medulloblastoma (MB) and design an automatic image segmentation model to reduce labor and time costs. Data from 217 medulloblastoma (MB) patients over the past 4years were collected and separated into a training set and a test set. Intraclass correlation coefficient (ICC), random survival forest (RSF), and least absolute shrinkage and selection operator (LASSO) regression methods were employed to select variables in the training set. Univariate and multivariate Cox proportional hazard models, as well as Kaplan-Meier analysis, were utilized to determine the relationship among the radiomics signature, clinical features, and overall survival. A dynamic nomogram was developed. Additionally, a 3D-Unet deep learning model was used to train the automatic tumor delineation model. Higher Rad-scores were significantly associated with worse OS in both the training and validation sets (p < 0.001 and p = 0.047, respectively). The Cox model combined clinical and radiomics signatures ([IBS = 0.079], [C-index = 0.747, SE = 0.045]) outperformed either radiomics signatures alone ([IBS = 0.081], [C-index = 0.738, SE = 0.041]) or clinical features alone ([IBS = 0.085], [C-index = 0.565, SE = 0.041]). The segmentation model had mean Dice coefficients of 0.80, 0.82, and 0.78 in the training, validation, and test sets respectively. A deep learning-based tumor segmentation model was built with Dice coefficients of 0.8372, 0.8017, and 0.7673 on the training set, validation set, and test set, respectively. A combination of radiomics features and clinical characteristics enhances the accuracy of OS prediction in medulloblastoma patients. Additionally, building an MRI image automatic segmentation model reduces labor and time costs. A survival prognosis model based on radiomics and clinical characteristics could improve the accuracy of prognosis estimation for medulloblastoma patients, and an MRI-based automatic tumor segmentation model could reduce the cost of time. • A model that combines radiomics and clinical features can predict the survival prognosis of patients with medulloblastoma. • Online nomogram and image automatic segmentation model can help doctors better judge the prognosis of medulloblastoma and save working time. • The developed AI system can help doctors judge the prognosis of diseases and promote the development of precision medicine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.