Abstract

The rapid growth of the internet provides tremendous resource for information in different domains (text, image, voice, and many others). This growth introduces new challenge to hit an exact match due to huge number of document returned by search engines where millions of items can be returned for certain subject. Images have been important resources for information, and billions of images are searched to fulfill user demands, which face the mentioned challenge. Automatic image annotation is a promising methodology for image retrieval. However most current annotation models are not yet sophisticated enough to produce high quality annotations. This thesis presents online intelligent indexing for image repositories based on their contents, although content based indexing and retrieving systems have been introduced, this thesis is adding an intelligent technique to re-index images upon better understanding for its composed concepts. Collaborative Agent scheme has been developed to promote objects of an image to concepts and re-index it according to domain specifications. Also this thesis presents automatic annotation system based on the interaction between intelligent agents. Agent interaction is synonym to socialization behavior dominating Agent society. The presented system is exploiting knowledge evolution revenue due to the socialization to charge up the annotation process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.