Abstract

The insufficiency of labeled training data is a major obstacle in automatic image annotation. To tackle this problem, we propose a semi-supervised manifold kernel density estimation (SSMKDE) approach based on a recently proposed manifold KDE method. Our contributions are twofold. First, SSMKDE leverages both labeled and unlabeled samples and formulates all data in a manifold structure, which enables a more accurate label prediction. Second, the relationship between KDE-based methods and graph-based semi-supervised learning (SSL) methods is analyzed, which helps to better understand graph-based SSL methods. Extensive experiments demonstrate the superiority of SSMKDE over existing KDE-based and graph-based SSL methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.