Abstract
The accelerometer, an onboard sensor, enables remote monitoring of animal posture and movement, allowing researchers to deduce behaviors. Despite the automated analysis capabilities provided by deep learning, data scarcity remains a challenge in ecology. We explored transfer learning to classify behaviors from acceleration data of critically endangered hawksbill sea turtles (Eretmochelys imbricata). Transfer learning reuses a model trained on one task from a large dataset to solve a related task. We applied this method using a model trained on green turtles (Chelonia mydas) and adapted it to identify hawksbill behaviors like swimming, resting, and feeding. We also compared this to a model trained on human activity data. Results showed an 8% and 4% F1-score improvement with transfer learning from green turtle and human datasets, respectively. Transfer learning allows researchers to adapt existing models to their study species, leveraging deep learning and expanding the use of accelerometers for wildlife monitoring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.