Abstract
A system for the identification of pollen grains in bright-field microscopic images is presented in this work. The system is based on segmentation of raw images and binary classification for 3 types of pollen grain. The segmentation method developed tackles a major difficulty of the problem: the existence of clustered pollen grains in the initial binary images. Two different SVM classification kernels are compared to identify the 3 pollen types. The method presented in this paper is able to provide a good estimate of the number of pollen grains of Olea Europea (relative error of 1.3%) in microscopic images. For the two others pollen types tested (Corylus and Quercus), the results were not as good (relative errors of 14.5% and 20.3%, respectively).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.