Abstract

A technique is proposed that allows automatic decomposition of electromyographic (EMG) signals into their constituent motor unit action potential trains (MUAPTs). A specific iterative algorithm with a classification method using fuzzy-logic techniques was developed. The proposed classification method takes into account imprecise information, such as waveform instability and irregular firing patterns, that is often encountered in EMG signals. Classification features were determined by the combining of time position and waveform information. Statistical analysis of inter-pulse intervals and spike amplitude provided an accurate estimation of features used in the classification step. Algorithm performance was evaluated using simulated EMG signals composed of up to six different discharging motor units corrupted with white noise. The algorithm was then applied to real signals recorded by a high spatial resolution surface EMG device based on a Laplacian spatial filter. On six groups of 20 simulated signals, the decomposition algorithm performed with a maximum and an average mean error rate of 2.13% and 1.37%, respectively. On real surface EMG signals recorded at different force levels (from 10% to 40% of the maximum voluntary contraction), the algorithm correctly identified 21 MUAPTs, compared with the 29 MUAPTs identified by an experienced neurophysiologist. The efficiency of the decomposition on surface EMG signals makes this method very attractive for non-invasive investigation of physiological muscle properties. However, it can also be used to decompose intramuscularly recorded EMG signals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.