Abstract

The analysis of structural mobility in molecular dynamics plays a key role in data interpretation, particularly in the simulation of biomolecules. The most common mobility measures computed from simulations are the Root Mean Square Deviation (RMSD) and Root Mean Square Fluctuations (RMSF) of the structures. These are computed after the alignment of atomic coordinates in each trajectory step to a reference structure. This rigid-body alignment is not robust, in the sense that if a small portion of the structure is highly mobile, the RMSD and RMSF increase for all atoms, resulting possibly in poor quantification of the structural fluctuations and, often, to overlooking important fluctuations associated to biological function. The motivation of this work is to provide a robust measure of structural mobility that is practical, and easy to interpret. We propose a Low-Order-Value-Optimization (LOVO) strategy for the robust alignment of the least mobile substructures in a simulation. These substructures are automatically identified by the method. The algorithm consists of the iterative superposition of the fraction of structure displaying the smallest displacements. Therefore, the least mobile substructures are identified, providing a clearer picture of the overall structural fluctuations. Examples are given to illustrate the interpretative advantages of this strategy. The software for performing the alignments was named MDLovoFit and it is available as free-software at: http://leandro.iqm.unicamp.br/mdlovofit

Highlights

  • Molecular Dynamics (MD) simulations are used to the study of the motions of macromolecular systems of high complexity, among which biomolecules are of utmost interest [1]

  • We propose an algorithm for structural alignment to be used in the interpretation of the mobility in MD simulations

  • The method allows the computation of the Root Mean Square Deviation (RMSD) of mobile versus rigid subsets of the structure that are identified automatically

Read more

Summary

Introduction

Molecular Dynamics (MD) simulations are used to the study of the motions of macromolecular systems of high complexity, among which biomolecules are of utmost interest [1]. An important part of the analysis consists in the description of the structural fluctuations of the macromolecule [2, 3], which can be complex and hard to interpret from a functional perspective.

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.