Abstract

Abstract A set of computationally inexpensive methods for reliable and robust detection of undesired signals in the EEG and EOG was designed, implemented, and tested. This strategy includes detection of eye blinking, eye movements, muscle activity, and flat lines in multichannel EEG and EOG data. The proposed methodology was verified on real awake data acquired in controlled conditions (44 recordings of total length 26.38 h) during Maintenance of Wakefulness Tests (MWT). The algorithms worked reliably (average precision was 0.992 ± 0.006, accuracy 0.988 ± 0.006, sensitivity 0.985 ± 0.009, and F1 score 0.988 ± 0.006) and fast (1 h of recording processed in 46.2 ± 5.3 s). We suggest testing this versatile and fast methodology on other type of EEG recordings with modification of threshold parameters if needed. This article reports data from a clinical trials no. NCT01433315 and NCT01580761.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.