Abstract

Registration of microscope images to Computed Tomography (CT) 3D volumes is a challenging task because it requires not only multi-modal similarity measure but also 2D-3D or slice-to-volume correspondence. This type of registration is usually done manually which is very time-consuming and prone to errors. Recently we have developed the first automatic approach to localize histological sections in μCT data of a jaw bone. The median distance between the automatically found slices and the ground truth was below 35 μm. Here we explore the limitations of the method by applying it to three tomography datasets acquired with grating interferometry, laboratory-based μCT and single-distance phase retrieval. Moreover, we compare the performance of three feature detectors in the proposed framework, i.e. Speeded Up Robust Features (SURF), Scale Invariant Feature Transform (SIFT) and Affine SIFT (ASIFT). Our results show that all the feature detectors performed significantly better on the grating interferometry dataset than on other modalities. The median accuracy for the vertical position was 0.06 mm. Across the feature detector types the smallest error was achieved by the SURF-based feature detector (0.29 mm). Furthermore, the SURF-based method was computationally the most efficient. Thus, we recommend to use the SURF feature detector for the proposed framework.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.