Abstract
According to the American Cancer Society, melanoma is one of the most common types of cancer in the world. In 2017, approximately 87,110 new cases of skin cancer were diagnosed in the United States alone. A dermatoscope is a tool that captures lesion images with high resolution and is one of the main clinical tools to diagnose, evaluate and monitor this disease. This paper presents a new approach to classify melanoma automatically using structural co-occurrence matrix (SCM) of main frequencies extracted from dermoscopy images. The main advantage of this approach consists in transform the SCM in an adaptive feature extractor improving his power of discrimination using only the image as parameter. The images were collected from the International Skin Imaging Collaboration (ISIC) 2016, 2017 and Pedro Hispano Hospital (PH2) datasets. Specificity (Spe), sensitivity (Sen), positive predictive value, F Score, Harmonic Mean, accuracy (Acc) and area under the curve (AUC) were used to verify the efficiency of the SCM. The results show that the SCM in the frequency domain work automatically, where it obtained better results in comparison with local binary patterns, gray-level co-occurrence matrix and invariant moments of Hu as well as compared with recent works with the same datasets. The results of the proposed approach were: Spe 95.23%, 92.15% and 99.4%, Sen 94.57%, 89.9% and 99.2%, Acc 94.5%, 89.93% and 99%, and AUC 92%, 90% and 99% in ISIC 2016, 2017 and PH2 datasets, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.