Abstract
Multi-objective ant colony optimization (MOACO) algorithms have shown promising results for various multi-objective problems, but they also offer a large number of possible design choices. Often, exploring all possible configurations is practically infeasible. Recently, the automatic configuration of a MOACO framework was explored and was shown to result in new state-of-the-art MOACO algorithms for the bi-objective traveling salesman problem. In this paper, we apply this approach to the bi-objective bidimensional knapsack problem (bBKP) to prove its generality and power. As a first step, we tune and improve the performance of four MOACO algorithms that have been earlier proposed for the bBKP. In a second step, we configure the full MOACO framework and show that the automatically configured MOACO framework outperforms all previous MOACO algorithms for the bBKP as well as their improved variants.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.