Abstract

The conclusion section of a radiology report is crucial for summarizing the primary radiological findings in natural language and essential for communicating results to clinicians. However, creating these summaries is time-consuming, repetitive, and prone to variability and errors among different radiologists. To address these issues, we evaluated a fine-tuned Text-To-Text Transfer Transformer (T5) model for abstractive summarization to automatically generate conclusions for neuroradiology MRI reports in a low-resource language. We retrospectively applied our method to a dataset of 232,425 neuroradiology MRI reports in Spanish. We compared various pre-trained T5 models, including multilingual T5 and those newly adapted for Spanish. For precise evaluation, we employed BLEU, METEOR, ROUGE-L, CIDEr, and cosine similarity metrics alongside expert radiologist assessments. The findings are promising, with the models specifically fine-tuned for neuroradiology MRI achieving scores of 0.46, 0.28, 0.52, 2.45, and 0.87 in the BLEU-1, METEOR, ROUGE-L, CIDEr, and cosine similarity metrics, respectively. In the radiological experts' evaluation, they found that in 75% of the cases evaluated, the conclusions generated by the system were as good as or even better than the manually generated conclusions. The methods demonstrate the potential and effectiveness of customizing state-of-the-art pre-trained models for neuroradiology, yielding automatic MRI report conclusions that nearly match expert quality. Furthermore, these results underscore the importance of designing and pre-training a dedicated language model for radiology report summarization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.