Abstract

Density fitting techniques that use automatically generated auxiliary basis sets generally rely on the formation of basis function products. Recently, Lehtola [ J. Chem. Theory Comput. 2021, 17, 6886-6900] presented a procedure making use of a purely spherical representation by adding auxiliary basis functions coupled to the required angular momentum quantum numbers for the product of spherical harmonics and then removing linear dependencies by means of a Cholesky decomposition. In this work, we extend this idea by making use of the explicit equations for the product of two spherical harmonics in the angular part of the basis function product. Some of the resulting terms are not directly accessible when popular standard integral libraries are used, which could prevent the widespread use of the exact product form. For these terms, we introduce four approximations of increasing sophistication that require integrals involving only standard Gaussian-type orbitals and thus can be computed with standard libraries. We assess the accuracy of the different schemes in the context of the aCD for the reconstruction of the electron repulsion integral matrix and absolute and relative single point energies and in the framework of optimally tuned range-separated hybrid functionals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call