Abstract

Complex networks have become powerful mechanisms for studying a variety of real-world systems. Consequently, many human-designed network models are proposed that reproduce nontrivial properties of complex networks, such as long-tail degree distribution or high clustering coefficient. Therefore, we may utilize network models in order to generate graphs similar to desired networks. However, a desired network structure may deviate from emerging structure of any generative model, because no selected single model may support all the needed properties of the target graph and instead, each network model reflects a subset of the required features. In contrast to the classical approach of network modeling, an appropriate modern network model should adapt the desired features of the target network. In this paper, we propose an automatic approach for constructing network models that are adaptive to the desired network features. We employ Genetic Algorithms in order to evolve network models based on the characteristics of the target networks. The experimental evaluations show that our proposed framework, called NetMix, results network models that outperform state-of-the-art baseline models according to the compliance with the desired features of the target networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.