Abstract

Electrical load dynamics result in system instability if not met with adequate power generation. Therefore, monitoring and control plans are necessary to avoid potential consequences. Tie-line-bias control has facilitated power exchange between interconnected areas to cope with load dynamics. However, this approach presents a challenge, as load variation in either area leads to frequency deviations and power irregularities in each of the interconnected areas, which is undesirable. The load frequency control loop method is used to address this issue, which utilizes area control errors. This study focuses on the control of inter-area oscillations in a six-area power system under the effect of renewable energy sources. It evaluates the area control errors in response to changes in load and the penetration of renewable energy into the system. To mitigate these errors efficiently, an adaptive-PID controller is proposed, and its results are compared with PI and PID controllers optimized with heuristic and meta-heuristic algorithms. The findings demonstrate the superiority of the proposed controller over traditional controllers in mitigating tie-line power errors and frequency deviations in each area of the interconnected power system, thus helping to mitigate inter-area oscillations and restore system stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.