Abstract
Diseases in fruit cause devastating problems in economic losses and production in the agricultural industry worldwide. In this chapter, a method to detect and classify fruit diseases automatically is proposed and experimentally validated. The image processing-based proposed approach is composed of the following main steps: in the first step K-Means clustering technique is used for the defect segmentation, in the second step some color and texture features are extracted from the segmented defected part, and finally diseases are classified into one of the classes by using a multi-class Support Vector Machine. The authors have considered diseases of apple as a test case and evaluated the approach for three types of apple diseases, namely apple scab, apple blotch, and apple rot, along with normal apples. The experimental results express that the proposed solution can significantly support accurate detection and automatic classification of fruit diseases. The classification accuracy for the proposed approach is achieved up to 93% using textural information and multi-class support vector machine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.