Abstract
Recent clinical research studies in forensic identification have highlighted the interest in sphenoid sinus anatomical characterization. Their pneumatization, well known as extremely variable in degrees and directions, could contribute to the radiologic identification, especially if dental records, fingerPrints, or DNA samples are not available. In this paper, we present a new approach for automatic person identification based on sphenoid sinus features extracted from computed tomography (CT) images of the skull. First, we present a new approach for fully automatic 3D reconstruction of the sphenoid hemisinuses which combines the fuzzy c-means method and mathematical morphology operations to detect and segment the object of interest. Second, deep shape features are extracted from both hemisinuses using a dilated residual version of a stacked convolutional auto-encoder. The obtained binary segmentation masks are thus hierarchically mapped into a compact and low-dimensional space preserving their semantic similarity. We finally employ the ℓ2 distance to recognize the sphenoid sinus and therefore identify the person. This novel sphenoid sinus recognition method obtained 100% of identification accuracy when applied on a dataset composed of 85 CT scans stemming from 72 individuals. Automatic Forensic Identification using 3D Sphenoid Sinus Segmentation and Deep Characterization from Dilated Residual Auto-Encoders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Medical & Biological Engineering & Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.