Abstract
Intelligent ultrasound imaging based on deep learning is one of the important applications in the field of intelligent medical care. In this article, we propose an automatic fetal ultrasound standard plane recognition (FUSPR) model based on deep learning in the Industrial Internet of Things (IIoT) environment. We build a distributed ultrasound data processing and predicting platform by using the IIoT and high-performance computing (HPC) technology. The FUSPR model deployed in the HPC center consists of a convolutional neural network (CNN) component and a recurrent neural network (RNN) component, which learns the spatial and temporal features of the ultrasound video stream by using multitask learning, respectively. The CNN component identifies fetal key anatomical structures from each video frame and accurately recognizes the potential four fetal standard planes. The RNN component obtains the temporal information between adjacent frames, and it realizes precise localization and tracking of fetal organs across frames. In addition, we introduce two feature fusion strategies into the FUSPR model, i.e., CNN fusion and RNN fusion, to fit the spatial sequence and motion representation in the video stream, thereby effectively improving the accuracy and robustness of the model. Extensive experiments conducted on more than 1000 ultrasound videos show that the FUSPR model is superior to the competing baselines in terms of accuracy and performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.