Abstract
The paper is mainly about the idea of robots replacing humans in all aspects. Able to express is the only aspect that makes humans a step higher than the robots we produce. We project an idea where robot can mimic human expressions by means of the “automatic facial expression system”. Automatic facial expression recognition system that utilizes multi-stream Hidden Markov Models (NEURAL NETWORKS). The proposed system uses Facial Animation Parameters (FAPs), supported by the MPEG-4 standard, as features describing facial expressions. In particular, the FAPs controlling the movement of the outer-lips and eyebrows are used as visual features for classification. Experiments were performed under several different scenarios utilizing outer-lip and eyebrow FAPs individually and jointly. A new approach is proposed for introducing facial expression and FAP group dependent stream weights. The weights were chosen based on the facial expression recognition results obtained when FAP group streams are utilized individually. The proposed multi stream NEURAL NETWORKS facial expression recognition system achieves relative reduction of the expression recognition error of 44%, compared to the single-stream NEURAL NETWORKS system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.