Abstract

In this paper, we investigate feature extraction and feature selection methods as well as classification methods for automatic facial expression recognition (FER) system. The FER system is fully automatic and consists of the following modules: face detection, facial detection, feature extraction, selection of optimal features, and classification. Face detection is based on AdaBoost algorithm and is followed by the extraction of frame with the maximum intensity of emotion using the inter-frame mutual information criterion. The selected frames are then processed to generate characteristic features using different methods including: Gabor filters, log Gabor filter, local binary pattern (LBP) operator, higher-order local autocorrelation (HLAC) and a recent proposed method called HLAC-like features (HLACLF). The most informative features are selected based on both wrapper and filter feature selection methods. Experiments on several facial expression databases show comparisons of different methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.