Abstract

This paper proposes an automatic facial expression recognition system, which uses new methods in both face detection and feature extraction. In this system, considering that facial expressions are related to a small set of muscles and limited ranges of motions, the facial expressions are recognized by these changes in video sequences. First, the differences between neutral and emotional states are detected. Faces can be automatically located from changing facial organs. Then, LBP features are applied and AdaBoost is used to find the most important features for each expression on essential facial parts. At last, SVM with polynomial kernel is used to classify expressions. The method is evaluated on JAFFE and MMI databases. The performances are better than other automatic or manual annotated systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.