Abstract

The reliable identification of skin and soft tissue infections (SSTIs) from electronic health records is important for a number of applications, including quality improvement, clinical guideline construction, and epidemiological analysis. However, in the United States, types of SSTIs (e.g. is the infection purulent or non-purulent?) are not captured reliably in structured clinical data. With this work, we trained and evaluated a rule-based clinical natural language processing system using 6,576 manually annotated clinical notes derived from the United States Veterans Health Administration (VA) with the goal of automatically extracting and classifying SSTI subtypes from clinical notes. The trained system achieved mention- and document-level performance metrics of the range 0.39 to 0.80 for mention level classification and 0.49 to 0.98 for document level classification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.