Abstract
Detecting and segmenting moving objects in an image sequence has always been a crucial task for many computer vision applications. This task becomes especially challenging for real-world image sequences of busy street scenes, where moving objects are ubiquitous. Although it remains technologically elusive to develop an effective and scalable image-based moving object detection, modern street side imagery are often augmented with sparse point clouds captured with depth sensors. This paper develops a simple but effective system for moving object detection that fully harnesses the complementary nature of 2D image and 3D LIDAR point clouds. We demonstrate how moving objects can be much more easily and reliably detected with sparse 3D measurements and how such information can significantly improve for moving objects in the image sequences. The results of our system are highly accurate joint segmentation of 2D images and 3D points for all moving objects in street scenes, which can serve many subsequent tasks such as object removal in images, 3D reconstruction and rendering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.