Abstract
In this paper, we propose a novel solution for the problem of segmenting macro- and micro-expression frames (or retrieving the expression intervals) in video sequences, which is a prior step for many expression recognition algorithms. The proposed method exploits the non-rigid facial motion that occurs during facial expressions by capturing the optical strain corresponding to the elastic deformation of facial skin tissue. The method is capable of spotting both macro-expressions which are typically associated with expressed emotions and rapid micro- expressions which are typically associated with semi-suppressed macro-expressions. We test our algorithm on several datasets, including a newly released hour-long video with two subjects recorded in a natural setting that includes spontaneous facial expressions. We also report results on a dataset that contains 75 feigned macro-expressions and 37 feigned micro-expressions. We achieve over a 75% true positive rate with a 1% false positive rate for macro-expressions, and a nearly 80% true positive rate for spotting micro-expressions with a .3% false positive rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.