Abstract

To evaluate whether the automatic exposure compensation in the presence of high-density materials can affect the measurement of alveolar bone level. Thirty regions of seven dry skulls and six mandibles were radiographed with and without a high-density material, using two digital radiographic technologies: photostimulable phosphor plate (PSP, Digora Optime) and sensor (CMOS, Digora Toto), totaling 120 images. The distances from the cement-enamel junction to the alveolar bone crest were measured using cone-beam computed tomography (CBCT) images to represent the reference standard. The same measurements of alveolar bone level and the average of the pixel values of the image were evaluated on the radiographs. Paired t test compared the average pixel values and alveolar bone-level measurements between images with and without high-density material. One-way analysis of variance compared the difference between radiographic and CBCT measurements (α = 0.05). The high-density material reduced the pixel values in PSP (p = 0.002) and CMOS (p < 0.001) technologies, demonstrating the AEC functioning in both technologies. There was no difference in bone-level measurements between the images without and with the high-density material for both technologies (p ≥ 0.091), or between the tomographic and radiographic measurements (p ≥ 0.319). In the presence of high-density material, the automatic exposure compensation reduces the average pixel values of the images (i.e., images get darker), but does not influence the radiographic measurements of alveolar bone level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call