Abstract

We describe algorithms for automating the process of picking seismic events in prestack migrated common depth image gathers. The approach uses supervised learning and statistical classification algorithms along with advanced signal/image processing algorithms. No model assumption is made, such as hyperbolic moveout. We train a probabilistic neural network for voxel classification using event times, subsurface points, and offsets (ground truth information) picked manually by expert interpreters. The key to success is using effective features that capture the important behavior of the measured signals. We test a variety of features calculated in a local neighborhood about the voxel under analysis. Selection algorithms ensure that we use only the features that maximize class separability. This event‐picking algorithm has the potential to reduce significantly the cycle time and cost of 3‐D prestack depth migration while making the velocity model inversion more robust.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.