Abstract

The hypernasality is one of the most typical characteristics of cleft palate (CP) speech. The evaluation outcome of hypernasality grading decides the necessity of follow-up surgery. Currently, the evaluation of CP speech is carried out by experienced speech therapists. However, the result strongly depends on their clinical experience and subjective judgment. This work aims to propose an automatic evaluation system for hypernasality grading in CP speech. The database tested in this work is collected by the Hospital of Stomatology, Sichuan University, which has the largest number of CP patients in China. Based on the production process of hypernasality, source sound pulse and vocal tract filter features are presented. These features include pitch, the first and second energy amplified frequency bands, cepstrum based features, MFCC, short-time energy in the sub-bands features. These features combined with KNN classier are applied to automatically classify four grades of hypernasality: normal, mild, moderate and severe. The experiment results show that the proposed system achieves a good performance. The classification rates for four hypernasality grades reach up to 80.4%. The sensitivity of proposed features to the gender is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.