Abstract
In softwood species, annual ring width correlates with various timber characteristics, including the density and modulus of elasticity along with bending and tensile strengths. Knowledge of annual ring profiles may contribute to more accurate machine strength grading of sawn timber. This paper proposes a fast and accurate method for automatic estimation of ring profiles along timber boards on the basis of optical scanning. The method utilizes two 1D convolutional neural networks to determine the pith location and detect the surface annual rings at multiple cross-sections along the scanned board. The automatically extracted rings and pith information can then be used to estimate the annual ring profile at each cross-section. The proposed method was validated on a large number of board cross-sections for which the pith locations and radial ring width profiles had been determined manually. The paper also investigates the potential of using the automatically estimated average ring width as an indicating property in machine strength grading of sawn timber. The results indicated that combining the automatically estimated ring width with other prediction variables can improve the accuracy of bending and tensile strength predictions, especially when the grading is based only on information extracted from optical and laser scanning data.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.