Abstract

Epilepsy is a frequently observed neurological abnormality. In the manual method, a physician monitors the recording of Electroencephalogram (EEG) of a patient to detect epileptic seizures. But this method is time-consuming and fallible. This chapter presents an automatic epileptic seizures detection and EEG signals classification method based on multi-domain feature extraction and multiscale entropy analysis. In this method, EEG data is collected and preprocessed for artifacts removal from the original data. Then discrete Fourier transform (DFT) and discrete wavelet transform (DWT) are applied for extracting features. Multiscale entropy (MSE) with sample entropy is also applied to extract nonlinear features. Finally, supervised learning classifiers such as support vector machine (SVM), k-nearest-neighbors (k-NN) and artificial neural network (ANN) are used for epileptic seizures detection, three-class and five-class classification of the EEG signals. The dataset has been collected from the University of Bonn. This method attained an accuracy of 99.54%, sensitivity of 98.56% and specificity of 99.76% for epileptic seizures detection. For three-class and five-class classification, accuracy was 98.22% and 87.00%, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.