Abstract
In this paper, the classification of normal controls (NC), very mild cognitive impairment and the early stage of Alzheimer’s disease (AD) known as mild cognitive impairment (MCI) from magnetic resonance imaging (MRI) is proposed, based on the two dimensional variational mode decomposition (2D-VMD) and deep convolutional neural network (DCNN). The 2D-VMD is applied to decompose the MRI scans into a discrete number of band limited intrinsic mode functions (BLIMFs). The automatic feature extraction, selection and optimization are performed using the proposed DCNN. The classification accuracy and learning speed of the 2D-VMD-DCNN method are compared with DCNN by taking the MRI data as input. The superior classification accuracy of the proposed 2D-VMD-DCNN method over DCNN method as well as other recently introduced prevalent methods is the major advantage for analyzing the biomedical images in the field of health care.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Engineering and Advanced Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.