Abstract

PurposeDriving while drowsy is a major cause of traffic accidents globally. Recent technologies for detection and alarm within automobiles for this condition are limited by their reliability, practicality, cost, and lack of clinical validation. In this study, we developed an early drowsiness detection algorithm and device based on the “gold standard brain biophysiological signal” and facial expression digital data.MethodsThe data were obtained from 10 participants. Artificial neural networks (ANN) were adopted as the model. Composite features of facial descriptors (ie, eye aspect ratio (EAR), mouth aspect ratio (MAR), face length (FL), and face width balance (FWB)) extracted from two-second video frames were investigated.ResultsThe ANN combined with the EAR and MAR features had the most sensitivity (70.12%) while the ANN combined with the EAR, MAR, and FL features had the most accuracy and specificity (60.76% and 58.71%, respectively). In addition, by applying the discrete Fourier transform (DFT) to the composite features, the ANN combined with the EAR and MAR features again had the highest sensitivity (72.25%), while the ANN combined with the EAR, MAR, and FL features had the highest accuracy and specificity (60.40% and 54.10%, respectively).ConclusionThe ANN with DFT combined with the EAR, MAR, and FL offered the best performance. Our direct driver sleepiness detection system developed from the integration of biophysiological information and internal validation provides a valuable algorithm, specifically toward alertness level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.