Abstract

PurposeThe purpose of this paper is to illustrate automatic differentiation (AD) as a new technology for the device sizing in electromagnetism by using gradient constrained optimization. Component architecture for the design of engineering systems (CADES) framework, previously described, is presented here with extended features.Design/methodology/approachThe paper is subject to further usage for optimization of AD (also named algorithmic differentiation) which is a powerful technique that computes derivatives of functions described as computer programs in a programming language like C/C++, FORTRAN.FindingsIndeed, analytical modeling is well suited regarding optimization procedure, but the modeling of complex devices needs sometimes numerical formulations. This paper then reviews the concepts implemented in CADES which aim to manage the interactions of analytical and numerical modeling inside of gradient‐based optimization procedure. Finally, the paper shows that AD has no limit for the input program complexity, or gradients accuracy, in the context of constrained optimization of an electromagnetic actuator.Originality/valueAD is employed for a large and complex numerical code computing multidimensional integrals of functions. Thus, the paper intends to prove the AD capabilities in the context of electromagnetic device sizing by means of gradient optimization. The code complexity as also as the implications of AD usage may stand as a good reference for the researchers in this field area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.