Abstract
Particle swam optimization (PSO) is one of the most effective optimization methods to find the global optimum point. In other hand, the descent direction (DD) is the gradient based method that has the local search capability. The combination of both methods is promising and interesting to get the method with effective global search capability and efficient local search capability. However, In many application, it is difficult or impossible to obtain the gradient exactly of an objective function. In this paper, we propose Automatic differentiation (AD) based for PSODD. we compare our methods on benchmark function. The results shown that the combination methods give us a powerful tool to find the solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Advances in Intelligent Informatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.