Abstract
The lung computed tomography (CT) scan contains valuable information and patterns that provide the possibility of early diagnosis of COVID-19 disease as a global pandemic by the image processing software. In this research, based on deep learning of artificial intelligence, the software has been designed that is used clinically to diagnose COVID-19 disease with high accuracy. Convolutional neural network architecture developed based on Inception-V3 for deep learning of lung image patterns, feature extraction, and image classification. The theory of transfer learning was utilized to increase the learning power of the system. Changes applied in the network layers to increase the detection power. The process of learning was repeated 30 times. All diagnostic statistical parameters of the diagnostic were analyzed to validate the software. Based on the data of Imam Khomeini Hospital in Sari, the validity, sensitivity, and accuracy of the software in diagnosing of affected to COVID-19 and nonaffected to it were obtained 98%, 98%, and 98%, respectively. Diagnostic statistical parameters on some data were 100%. The modified algorithm of Inception-V3 applied to heterogeneous data also had acceptable precision. The proposed basic architecture of Inception-v3 utilized for this research has an admissible speed and exactness in learning CT scan images of patients' lungs, and diagnosis of COVID-19 pneumonia, which can be utilized clinically as a powerful diagnostic tool.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.