Abstract
The early detection of diabetic retinopathy is crucial for preventing blindness. However, it is time-consuming to analyze fundus images manually, especially considering the increasing amount of medical images. In this paper, we propose an automatic diabetic retinopathy screening method using color fundus images. Our approach consists of three main components: edge-guided candidate microaneurysms detection, candidates classification using mixed features, and diabetic retinopathy prediction using fused features of image level and lesion level. We divide a screening task into two sub-classification tasks: 1) verifying candidate microaneurysms by a naive Bayes classifier; 2) predicting diabetic retinopathy using a support vector machine classifier. Our approach can effectively alleviate the imbalanced class distribution problem. We evaluate our method on two public databases: Lariboisiere and Messidor, resulting in an area under the curve of 0.908 on Lariboisiere and 0.832 on Messidor. These scores demonstrate the advantages of our approach over the existing methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.