Abstract
Despite immobilization of head and neck (H and N) cancer patients, considerable posture changes occur over the course of radiotherapy (RT). To account for the posture changes, we previously implemented a multiple regions of interest (mROIs) registration system tailored to the H and N region for image-guided RT correction strategies. This paper is focused on the automatic segmentation of the ROIs in the H and N region. We developed a fast and robust automatic detection system suitable for an online image-guided application and quantified its performance. The system was developed to segment nine high contrast structures from the planning CT including cervical vertebrae, mandible, hyoid, manubrium of sternum, larynx and occipital bone. It generates nine 3D rectangular-shaped ROIs and informs the user in case of ambiguities. Two observers evaluated the robustness of the segmentation on 188 H and N cancer patients. Bland–Altman analysis was applied to a sub-group of 50 patients to compare the registration results using only the automatically generated ROIs and those manually set by two independent experts. Finally the time performance and workload were evaluated. Automatic detection of individual anatomical ROIs had a success rate of 97%/53% with/without user notifications respectively. Following the notifications, for 38% of the patients one or more structures were manually adjusted. The processing time was on average 5 s. The limits of agreement between the local registrations of manually and automatically set ROIs was comprised between ±1.4 mm, except for the manubrium of sternum (−1.71 mm and 1.67 mm), and were similar to the limits agreement between the two experts. The workload to place the nine ROIs was reduced from 141 s (±20 s) by the manual procedure to 59 s (±17 s) using the automatic method. An efficient detection system to segment multiple ROIs was developed for Cone-Beam CT image-guided applications in the H and N region and is clinically implemented in our department.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.