Abstract
In this paper, a data-driven framework is proposed to automatically detect wind turbine blade surface cracks based on images taken by unmanned aerial vehicles (UAVs). Haar-like features are applied to depict crack regions and train a cascading classifier for detecting cracks. Two sets of Haar-like features, the original and extended Haar-like features, are utilized. Based on selected Haar-like features, an extended cascading classifier is developed to perform the crack detection through stage classifiers selected from a set of base models, the LogitBoost, Decision Tree, and Support Vector Machine. In the detection, a scalable scanning window is applied to locate crack regions based on developed cascading classifiers using the extended feature set. The effectiveness of the proposed data-driven crack detection framework is validated by both UAV-taken images collected from a commercial wind farm and artificially generated. The extended cascading classifier is compared with a cascading classifier developed by the LogitBoost only to show its advantages in the image-based crack detection. A computational study is performed to further demonstrate the success of the proposed framework in identifying the number of cracks and locating them in original images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.