Abstract
The interpretation of possible weld discontinuities in industrial radiography is ensured by human interpreters. The types of defects are porosity, lack of penetration, shrinkage, and fracture. It is thus desirable to develop computer-aided techniques to assist the interpreter in evaluating the quality of the welded joints. Using back propagation algorithm the images of weld defects are trained. The Gaussian Mixture Model (GMM) classifier is used to classify the defects in the input image. The input image is compared with the trained image and defect is detected if defect is present. The nature of the defect is identified and the type of defect is mentioned.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.