Abstract
Weld defect detection is an important application in the field of Non-Destructive Testing (NDT). These defects are mainly due to manufacturing errors or welding processes. In this context, image processing especially segmentation is proposed to detect and localize efficiently different types of defects. It is a challenging task since radiographic images have deficient contrast, poor quality and uneven illumination caused by the inspection techniques. The usual segmentation technique uses a region of interest ROI from the original image. In this article, a robust and automatic method is presented to detect linear defect from the original image without selection of ROI based on canny detector and a modified ‘Hough Transform’ technique. This task can be subdivided into the following steps: firstly, preprocessing step with Gaussian filter and contrast stretching; secondly, segmentation technique is used to isolate weld region from background and non-weld using Adaptative Thresholding and to extract edges; thirdly, detection, location of linear defect and limiting the welding area by Hough Transform. The experimental results show that our proposed method gives good performance for industrial radiographic images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.