Abstract
The aim of study is a detection of ventricular and supraventricular wide QRS arrhythmias using complex of morphological criteria and algorithms by method of automatic analysis. For 100 patients (m/f- 61/39, Me (min; max)- 44.5 (10; 85) years) of researched group the analysis of 14306 single wide ectopic complexes (QRS 120-230 ms) has been done. Wide complexes include 11028 (77%) ventricular complexes and 3278 (23%) supraventricular complexes represented by 145 different forms of QRS. For verification of arrhythmias origin transesophageal ECG recording and endocardial electrophysiological study were done. The control group included 59 patients (m/f- 25/34, Me (min; max)- 49.5 (14,85) years) with 720 wide QRS, including 467 (65%) ventricular and 253 (35%) supraventricular complexes represented by 86 forms of QRS. The criteria DrewB.J., ScheinmanM.M. (1995); WellensH.J. (1978), RWPT II (Pava LF, 2010) and the algorithms of BrugadaP. (1991); Bayesian (2000); VereckeiA.(2008) were used to evaluate sensitivity, specificity and diagnostic accuracy of wide QRS complexes recognition one byone and together, using the method of Wald sequential automatic analysis (KT Result3, CJSC INCART, Russia) and method ofartificial neural networks. The best results for the detection of ventricular arrhythmias algorithms were demonstrated by the Brugada P., Drew B.J., Scheinman M.M. algorithm (sensitivity 86.43%, specificity 66.73%, diagnostic accuracy 82.14% in the study group, sensitivity 81.80%, specificity 73.12%, diagnostic accuracy 78.75% in the control group), and the Bayesian algorithm (sensitivity 87.81%, specificity 73.62%, diagnostic accuracy 84.72% in the study group, sensitivity 83.30%, specificity 77.08%, diagnostic accuracy 81.11% in the control group). A complex analysis of the Wald method recognized ventricular arrhythmias in the research group with sensitivity 83.11%, specificity 83.65%, diagnostic accuracy 83.23% and in the control group with a sensitivity 83.51%, specificity of 84.58% anddiagnostic accuracy 83.89%. Artificial neural networks recognized ventricular arrhythmias with sensitivity 91.43%, specificity 91.30% and diagnostic accuracy 91.39% in the control group and with sensitivity 97.06%, specificity 99.39% and diagnostic accuracy 97.6% in the research group. Automatic analysis allows obtaining simultaneously the results of each algorithms/criteria and in combination. It significantly reduces the doctor's work in assessing of amplitude-time characteristics ofthe complexes. Using artificial neural networks increases the accuracy of of ventricular and supraventricular arrhythmias recognition.
Highlights
supraventricular complexes represented by 145 different forms of QRS
supraventricular complexes represented by 86 forms of QRS
The best results for the detection of ventricular arrhythmias algorithms were demonstrated by the Brugada P
Summary
Aim. The aim of study is a detection of ventricular and supraventricular wide QRS arrhythmias using complex of morphological criteria and algorithms by method of automatic analysis. Цель работы: изучение возможности распознавания аритмий с широкими комплексами QRS с помощью автоматического анализа при комплексном применении морфологических критериев и алгоритмов. Статистический анализ данных В обучающей выборке для суправентрикулярных и желудочковых комплексов были построены графики распределения каждого из использующихся критериев / алгоритмов дифференциальной диагностики, на отдельных участках которых оценивался процент попадания в них тех и других аритмий (Pok и Perr). После построения графика распределения общего коэффициента Вальда для суправентрикулярных и желудочковых комплексов и аналогичного разделения его на участки определялась вероятность попадания в него как тех, так и других комплексов, тем самым, проводился анализ с помощью совокупности критериев / алгоритмов.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.