Abstract

In the field of industry, corrosion and defects are amongst the most frequent operations. Industrial Materials have periodic defects that are difficult to detect during production even by experienced human inspectors. Defects are difficult to detect during production even by experienced human inspectors. Usually, the colour transfer process contains an image segmentation phase and an image construction phase. Therefore, we introduce an image processing method for automatically detecting the defects in surfaces. We show how barely visible defect can be optically enhanced to improve annual assessment as well as how descriptor-based image processing and machine learning can be used to allow automated detection. Image enhancement is performed by applying manual calculation. We implement this simulation using MATLAB R2013a. Results show that the proposed allows training both tested classifiers with good classification rates around 98.9%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.