Abstract

This paper presents a complete framework aimed to nondestructive inspection of composite materials. Starting from the acquisition, performed with lock-in thermography, the method flows through a set of consecutive blocks of data processing: input enhancement, feature extraction, classification and defect detection. Experimental results prove the capability of the presented methodology to detect the presence of defects underneath the surface of a calibrated specimen made of Glass Fiber Reinforced Polymer (GFRP). Results are also compared with those obtained by other techniques, based on different features and unsupervised learning methods. The comparison further proves that the proposed methodology is able to reduce the number of false positives, while ensuring the exact detection of subsurface defects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.