Abstract
This paper presents an automatic method for detecting railway surface defects called “squats” using axle box acceleration (ABA) measurements on trains. The method is based on a series of research results from our group in the field of railway engineering that includes numerical simulations, the design of the ABA prototype, real-life implementation, and extensive field tests.We enhance the ABA signal by identifying the characteristic squat frequencies, using improved instrumentation for making measurements, and using advanced signal processing. The automatic detection algorithm for squats is based on wavelet spectrum analysis and determines the squat locations. The method was validated on the Groningen–Assen track in The Netherlands and accurately detected moderate and severe squats with a hit rate of 100%, with no false alarms. The methodology is also sensitive to small rail surface defects and enables the detection of squats at their earliest stage. The hit rate for small rail surface defects was 78%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Intelligent Transportation Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.