Abstract

Social tags are annotations for Web pages collaboratively added by users. It will be much easier to understand the meaning of Web pages and classify them according to their tags. The precision in retrieving Web pages may also increase using such tags. Nowadays social tags are mostly annotated manually by users via social bookmarking Web sites. Such manual annotation process may produce diverse, redundant, and inconsistent tags. Besides, many tags which are inconsistent with their annotated Web pages exist and deteriorate the feasibility of social tags. In this work we will develop an automatic scheme to discover the associations between Web pages and social tags and apply such associations on applications of social tag spam detection. We applied a text mining approach based on self-organizing maps to find the relationships between Web pages and social tags. The disadvantages of manual annotation will be remedied through such relationships. The discovered associations were then used to identify social tag spams. Preliminary experiments show that the quality and usability of social tags were improved through this method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.