Abstract
The severity of rice blast and its impacts on rice yield are closely related to the inoculum quantity of Magnaporthe oryzae, and automatic detection of the pathogen spores in microscopic images can provide a rapid and effective way to quantify pathogen inoculum. Traditional spore detection methods mostly rely on manual feature extraction and shallow machine learning models, and are mostly designed for the indoor counting of a single spore class, which cannot handle the interference of impurity particles in the field. This study achieved automatic detection of rice blast fungus spores in the mixture with other fungal spores and rice pollens commonly encountered under field conditions by using deep learning based object detection techniques. First, 8959 microscopic images of a single spore class and 1450 microscopic images of mixed spore classes, including the rice blast fungus spores and four common impurity particles, were collected and labelled to form the benchmark dataset. Then, Faster R-CNN, Cascade R-CNN and YOLOv3 were used as the main detection frameworks, and multiple convolutional neural networks were used as the backbone networks in training of nine object detection algorithms. The results showed that the detection performance of YOLOv3_DarkNet53 is superior to the other eight algorithms, and achieved 98.0% mean average precision (intersection over union > 0.5) and an average speed of 36.4 frames per second. This study demonstrated the enormous application potential of deep object detection algorithms in automatic detection and quantification of rice blast fungus spores.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.