Abstract

Load testing is one of the means for evaluating the performance of Large Scale Systems (LSS). At the end of a load test, performance analysts must analyze thousands of performance counters from hundreds of machines under test. These performance counters are measures of run-time system properties such as CPU utilization, Disk I/O, memory consumption, and network traffic. Analysts observe counters to find out if the system is meeting its Service Level Agreements (SLAs). In this paper, we present and evaluate one supervised and three unsupervised approaches to help performance analysts to 1) more effectively compare load tests in order to detect performance deviations which may lead to SLA violations, and 2) to provide them with a smaller and manageable set of important performance counters to assist in root-cause analysis of the detected deviations. Our case study is based on load test data obtained from both a large scale industrial system and an open source benchmark application. The case study shows, that our wrapper-based supervised approach, which uses a search-based technique to find the best subset of performance counters and a logistic regression model for deviation prediction, can provide up to 89% reduction in the set of performance counters while detecting performance deviations with few false positives (i.e., 95% average precision). The study also shows that the supervised approach is more stable and effective than the unsupervised approaches but it has more overhead due to its semi-automated training phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.