Abstract

Quantum sensors leverage matter's quantum properties to enable measurements with unprecedented spatial and spectral resolution. Among these sensors, those utilizing nitrogen-vacancy (NV) centers in diamond offer the distinct advantage of operating at room temperature. Nevertheless, signals received from NV centers are often complex, making interpretation challenging. This is especially relevant in low magnetic field scenarios, where standard approximations for modeling the system fail. Additionally, NV signals feature a prominent noise component. In this Letter, we present a signal-to-image deep learning model capable of automatically inferring the number of nuclear spins surrounding a NV sensor and the hyperfine couplings between the sensor and the nuclear spins. Our model is trained to operate effectively across various magnetic field scenarios, requires no prior knowledge of the involved nuclei, and is designed to handle noisy signals, leading to fast characterization of nuclear environments in real experimental conditions. With detailed numerical simulations, we test the performance of our model in scenarios involving varying numbers of nuclei, achieving an average error of less than 2kHz in the estimated hyperfine constants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.